REAL-TIME AND WAFER-TO-WAFER CONTROL STRATEGIES TO ADDRESS SEASONING OF PLASMA REACTORS*

Ankur Agarwala) and Mark J. Kushnerb)

a)Department of Chemical and Biomolecular Engineering
University of Illinois, Urbana, IL 61801, USA
aagarwl3@uiuc.edu

b)Department of Electrical and Computer Engineering
Iowa State University, Ames, IA 50011, USA
mjk@iastate.edu

http://uigelz.ece.iastate.edu

54th AVS Symposium, October 2007

*Work supported by the SRC and NSF
AGENDA

• Seasoning of plasma reactors
• Approach and Methodology
 • Hybrid Plasma Equipment Model
 • Virtual Plasma Equipment Model
• Si etching in Ar/Cl₂
 • Effect of seasoning reactor walls on etch rates
 • Real-time and run-to-run control of etch rates
• Concluding Remarks
SEASONING OF PLASMA REACTORS

- Deposition on reactor walls during a process changes surface reactivity (e.g., seasoning).

- Seasoning changes reactive fluxes to substrate. To control wafer-to-wafer variability:
 - Clean the seasoned chamber following each wafer.
 - Season the chamber prior to process.

- Seasoning of reactor has been computationally investigated:
 - Accounted for variation of IEDs and reactivity on all surfaces
 - Feedback control implemented to mitigate process drifts.

Ref: E.S. Aydil et al., JES 150, G418 (2003)
HYBRID PLASMA EQUIPMENT MODEL (HPEM)

- **Electromagnetics Module**: Antenna generated electric and magnetic fields
- **Electron Energy Transport Module**: Beam and bulk generated sources and transport coefficients.
- **Fluid Kinetics Module**: Electron and Heavy Particle Transport, Poisson’s equation

- **Plasma Chemistry MC Module**: IEADs to surfaces
- **Surface Chemistry Module**: Surface coverage and reactive sticking coefficients.

Iowa State University
Optical and Discharge Physics
VIRTUAL PLASMA EQUIPMENT MODEL (VPEM)

- VPEM—A platform to investigate real-time-control strategies.
 - Sensor Module: Simulated sensors embedded in HPEM
 - Control Module: Implements programmable control scheme
 - Actuator Module: Based on set-point sensor reading, actuator is reset.
Si ETCHING IN Ar/Cl₂: WAFER SURFACE MECHANISM

- Cl adsorbs on forming SiClₓ passivation layer.

\[
\begin{align*}
\text{Cl}(g) + \text{Si}(s) & \rightarrow \text{SiCl}(s), \quad p=0.99 \\
\text{Cl}(g) + \text{SiCl}_n(s) & \rightarrow \text{SiCl}_{n+1}(s) \quad p=0.2
\end{align*}
\]

- Ions etch passivation (for 200 eV).

\[
\begin{align*}
\text{Cl}^+(g) + \text{SiCl}(s) & \rightarrow \text{SiCl}_2(g), \quad p=0.3 \\
\text{Cl}^+(g) + \text{SiCl}_3(s) & \rightarrow \text{SiCl}_4(g), \quad p=0.6 \\
\text{M}^+(g) + \text{SiCl}_x(s) & \rightarrow \text{SiCl}_x(g) \quad p=0.6
\end{align*}
\]

- Etch products further passivates, creating etch blocks.

\[
\begin{align*}
\text{SiCl}_2(g) + \text{Si}(s) & \rightarrow \text{Si}_2\text{Cl}_2(s) \quad p=0.3 \\
\text{SiCl}_2(g) + \text{SiCl}_n(s) & \rightarrow \text{Si}_2\text{Cl}_{n+2} \quad p=0.1-0.2
\end{align*}
\]

Iowa State University
Optical and Discharge Physics
Si ETCHING IN Ar/Cl\textsubscript{2}: WALL SURFACE MECHANISM

- On chamber walls

\[
\text{SiCl}_2(g) + W(s) \rightarrow \text{SiCl}_2(s) \quad p=0.2
\]
\[
\text{SiCl}_2(g) + \text{SiCl}_2(s) \rightarrow \text{(no reaction)}
\]
\[
\text{M}^+(g) + \text{SiCl}_2(s) \rightarrow \text{SiCl}(s) + \text{Cl}(g) \quad p=0.1
\]
\[
\text{M}^+(g) + \text{SiCl}_2(s) \rightarrow \text{SiCl}_2(g) + W(s) \quad p=0.8
\]

- Passivated walls effect reactivity of Cl.

\[
\text{Cl}(g) + W(s) \rightarrow \text{Cl}(s) \quad p=0.1
\]
\[
\text{Cl}(g) + \text{Cl}(a) \rightarrow \text{Cl}_2(g) + W(s) \quad p=0.1
\]
\[
\text{Cl}(g) + \text{SiCl}_2(s) \rightarrow \text{(no reaction)}
\]
Si ETCHING IN Ar/Cl$_2$

- Seasoning investigated for Si etch products in Ar/Cl$_2$.
- Base case:
 - Ar/Cl$_2$ = 90/10, 100 sccm
 - 15 mTorr, 300 W
 - 75 V bias at 5 MHz
- Silicon etching by chlorine is the source SiCl$_x$.
- Transport of SiCl$_x$ results in deposition (and further sputter/etch) on other surfaces.
Dominant ions are Ar^+ and Cl^+ due to dissociation of Cl_2.

Dominant neutrals are Cl, SiCl_2^- and SiCl_4.

SiCl_2^- is potentially reactive with surfaces; SiCl_4 is not.

$\text{Ar}/\text{Cl}_2 = 90/10$, 100 sccm, 15 mTorr, 300 W, 75 V at 5 MHz.
Ion energies on wafer are bimodal, typical of rf sinusoidal biases.

Ion energies on other surfaces peak at time averaged Φ_{floating} (38 V).

Quartz nearly always at Φ_{floating}.

IEADs extend to higher energy on grounded walls (oscillation in Φ_{plasma}).

Reactivity of wafer and walls differ due to differences in threshold energies and IEDs.

$\text{Ar/Cl}_2 = 90/10$, 100 sccm, 15 mTorr, 300 W, 75 V at 5 MHz.
SEASONING EFFECT: ETCH RATE

- Si etch for 3 min for each wafer.
- Etch rate in seasoned chamber decreases.
- Passivation of walls by SiCl$_2$ decreases further reactivity of SiCl$_2$ increasing density in plasma.
- SiCl$_2$ passivates wafer SiCl$_x$ sites forming Si$_2$Cl$_y$ etch blocks.

\[
\text{SiCl}_2(g) + \text{SiCl}_n(s) \rightarrow \text{Si}_2\text{Cl}_{n+2}(s)
\]
- Ions removes Si$_2$Cl$_y$ with no net contribution to etch rate.
- Rate of change of etch rate decreases with number of wafers; chamber wall conditions stabilize.

- Ar/Cl$_2$=90/10, 100 sccm, 10 mTorr, 300 W, 75 V at 5 MHz

Iowa State University
Optical and Discharge Physics
SEASONED CHAMBER ETCH RATE: VOLTAGE

- Si etch rates decrease with seasoning.
- With additional wafers etch rates stabilize as chamber seasons.
- Etch rate stabilizes sooner at higher voltages.
 - Higher etch rates and more etch products season chamber faster.
 - Larger ion energies remove overlying Si$_2$Cl$_n$ more rapidly.
- In spite of lower reactivity of Cl on walls (and larger Cl in plasma), etch rates decrease due to site blockage.

- Ar/Cl$_2$=90/10, 100 sccm, 10 mTorr, 300 W

Iowa State University
Optical and Discharge Physics
SURFACE COVERAGES: WAFER

- As additional wafers are etched:
 - Flux of etch products to wafer increases.
 - Coverage of etch block, \(\text{Si}_2\text{Cl}_y \) increases.
 - Ions remove etch block, exposing native Si.
 - Chlorination of native Si results in increasing coverage of Si.
- \(\text{Ar/Cl}_2=90/10 \), 100 sccm, 15 mTorr, 300 W.

Iowa State University
Optical and Discharge Physics
REMEDY TO SEASONING: REAL-TIME CONTROL

- Etch rate was controlled using a feedback control loop as the chamber seasons.
- Sensor: Etch rate monitor
 Actuator: Voltage
- Without control:
 - Re-deposition of etch product blocks sites…reduces etch rate.
- With proportional controller:
 - Voltage is generally increased to sputter re-deposition products.
 - Set-point etch rate is restored.

Iowa State University
Optical and Discharge Physics
Run-to-run control was achieved using a proportional controller.

- After each run, a new wafer is used, i.e. coverage of Si is 1.

Bias voltage is not reset to actuator setting from previous run(s).

- Chamber wall conditions lower initial etch rate.
- Initially, aggressive voltage change is required to restore set point etch rate.
- Ultimately, voltage is lowered as high etch rates are enabled by high bias voltage.

\[
\text{Ar/Cl}_2=90/10, 100 \text{ sccm}, 10 \text{ mTorr}, 300 \text{ W}, 100 \text{ V at 5 MHz.}
\]
RUN-TO-RUN CONTROL: ACTUATOR BIAS NOT RESET

• β is the normalized rate of change of voltage during each control case.

• At high biases:
 • Aggressive voltage changes makes it difficult to achieve control.
 • High ion flux and low passivating radical flux.
 • Chemical etch transitions to physical etch.
 • Lower β maintains Cl radical flux to a significant fraction of total radical flux.

- Ar/Cl$_2$=90/10, 100 sccm, 10 mTorr, 300 W.
RUN-TO-RUN CONTROL: ACTUATOR BIAS RESET

- Etch rate stability was achieved using run-to-run control as the chamber seasons.

- With proportional controller:
 - Bias voltage is reset to actuator setting from previous run.
 - Enables initial high etch rates → bias voltage is lowered
 - As chamber seasons, voltage increases to maintain set point etch rate.

- $\text{Ar}/\text{Cl}_2=90/10$, 100 sccm, 10 mTorr, 300 W, 75 V at 5 MHz.
CONCLUDING REMARKS

• Chamber seasoning was investigated in Si etch using Ar/Cl₂ plasmas.

• Etch rates decreased in a seasoned chamber.
 • Seasoned reactor increases SiCl₂ flux back to wafer.
 • Feedback of etch products (SiCl₂) from the plasma form Si₂Cl₅ etch blocks.
 • Removal of Si₂Cl₅ does not contribute to etch rate.

• Sensors and real-time control will be required to mitigate effects of seasoning.

• Proportional controller algorithm was used to maintain a constant etch rate in both real-time and run-to-run.
 • Sensor: Etch rate monitor
 • Actuator: Bias Voltage