EFFECT OF PRESSURE AND ELECTRODE SEPARATION ON PLASMA UNIFORMITY IN DUAL FREQUENCY CAPACITIVELY COUPLED PLASMA TOOLS *

Yang Yanga) and Mark J. Kushnerb)

a)Department of Electrical and Computer Engineering
Iowa State University, Ames, IA 50011, USA
yangying@eecs.umich.edu

b)Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI 48109, USA
mjkush@umich.edu

http://uigelz.eecs.umich.edu

June 2009

* Work supported by Semiconductor Research Corp., Applied Materials and Tokyo Electron Ltd.
AGENDA

- Optimization of multiple frequency plasma etching reactors
- Description of the model
- Scaling with:
 - Pressure
 - Electrode separation
- Concluding remarks
MULTI-FREQUENCY PLASMA ETCHING REACTORS

- State of the art plasma etching reactors use multiple frequencies to create the plasma and accelerate ions into the wafer.

- Voltage finds its way into the plasma propagating around electrodes (not through them).
 - Ref: S. Rauf, AMAT

University of Michigan
Institute for Plasma Science & Engr.
WAVE EFFECTS
CHALLENGE SCALING

- As wafer size and frequencies increase - and wavelength decreases, "electrostatic" applied voltage takes on wavelike effects.

- Plasma shortened wavelength: \[\lambda = \frac{\lambda_0}{(1 + \Delta/s)^{1/2}} \]
 \[\Delta = \min(\text{half plasma thickness, skin depth}), s = \text{sheath thickness} \]

A. Perret, APhL 83 (2003)
http://mrsec.wisc.edu

University of Michigan
Institute for Plasma Science & Engr.
AN EXAMPLE: ADJUSTABLE GAP CONTROL

- Adjusting the gap (electrode separation) of capacitively coupled plasmas (CCPs) enables customization of the radical fluxes.

- Enables different processes, such as mask opening and trench etching, to be separately optimized.

COUPLED EFFECTS IN HIGH FREQUENCY CCPs

• Electromagnetic wave effects impact processing uniformity in high frequency CCPs.

• When coupled with changing gap and pressure, controlling the plasma uniformity could be more difficult.

• Results from a computational investigation of impacts of pressure and gap on plasma uniformity in dual frequency CCPs (DF-CCPs) will be discussed.
HYBRID PLASMA EQUIPMENT MODEL (HPEM)

- **Electron Energy Transport Module:**
 - Electron Monte Carlo Simulation provides EEDs of bulk electrons
 - Separate MCS used for secondary, sheath accelerated electrons

- **Fluid Kinetics Module:**
 -Heavy particle and electron continuity, momentum, energy
 -Maxwell’s Equations

- **Plasma Chemistry Monte Carlo Module:**
 -IEADs onto wafer
Full-wave Maxwell solvers are challenging due to coupling between electromagnetic (EM) and sheath forming electrostatic (ES) fields.

EM fields are generated by rf sources and plasma currents

ES fields originate from charges.

We separately solve for EM and ES fields and sum the fields for plasma transport.

\[\vec{E} = \vec{E}_{EM} - \nabla \Phi_{ES} \]

Boundary conditions (BCs):

EM field: Determined by rf sources.

ES field: Determined by blocking capacitor (DC bias) or applied DC voltages.

University of Michigan
Institute for Plasma Science & Engr.
• 2D, cylindrically symmetric.
• Base conditions
 • $\text{Ar}/\text{CF}_4 = 90/10$, 400 sccm
 • High frequency (HF) upper electrode: 150 MHz, 300 W
 • Low frequency (LF) lower electrode: 10 MHz, 300 W
• Main species in Ar/CF_4 mixture
 • $\text{Ar, Ar}^*, \text{Ar}^+$
 • $\text{CF}_4, \text{CF}_3, \text{CF}_2, \text{CF}, \text{C}_2\text{F}_4, \text{C}_2\text{F}_6, \text{F, F}_2$
 • $\text{CF}_3^+, \text{CF}_2^+, \text{CF}^+, \text{F}^+$
 • $\text{e, CF}_3^-, \text{F}^-$

University of Michigan
Institute for Plasma Science & Engr.
• With increasing Ar pressure, electron density transitions from center high to edge high.
• Agrees with experimental trend, albeit in a different geometry.
• DF-CCP at higher frequency, with electronegative gas...trends?

University of Michigan Institute for Plasma Science & Engr.
EM EFFECTS: FIELD IN SHEATHS

- HF = 50 MHz, Max = 410 V/cm
- HF = 150 MHz, Max = 355 V/cm
- LF = 10 MHz, Max = 750 V/cm

- Low frequency – electrostatic edge effect.
- High Frequency – Constructive interference of waves in center of reactor.

Ar/CF₄=90/10, 50 mTorr, 400 sccm
HF: 300 W, LF: 10 MHz/300 W
SCALING WITH PRESSURE IN DF-CCP

- With increasing pressure:
 - Concurrent increase in $[e]$.
 - Shift in maximum of $[e]$ towards the HF electrode and the center of the reactor.
- The shift is a result of
 - Shorter energy relaxation distance.
 - Combination of finite wavelength and skin effect.

- $\text{Ar/CF}_4=90/10$
- 400 sccm
- HF: 150 MHz/300 W
- LF: 10 MHz/300 W

University of Michigan
Institute for Plasma Science & Engr.
ELECTRON ENERGY DISTRIBUTIONS (EEDs)

- **d** = distance to the upper electrode.
- **EEDF** as a function of height:
 - 10 mTorr — no change in bulk plasma with tail lifted in sheath.
 - 150 mTorr — Tails of EEDs lift as HF electrode is approached.
- Produce different spatial distribution of ionization sources.

- Ar/CF$_4$=90/10
- 400 sccm
- HF: 150 MHz/300 W
- LF: 10 MHz/300 W

University of Michigan Institute for Plasma Science & Engr.
ELECTRON IMPACT IONIZATION SOURCE (S_e)

- **Axial Direction**
 - With increasing pressure:
 - Axial direction: Energy relaxation distance decreases and so sheath heating is dissipated close to electrode – transition to net attachment.
 - Radial direction: As energy relaxation distance decreases, S_e mirrors the constructively interfered HF field - more center peaked.

- **Radial Direction (In the HF Sheath)**

- **With increasing pressure:**
 - Ar/CF$_4$=90/10
 - 400 sccm
 - HF: 150 MHz/300 W
 - LF: 10 MHz/300 W

University of Michigan
Institute for Plasma Science & Engr.
ION FLUX INCIDENT ON WAFTER

- With increasing pressure, ionization source increases but moves further from wafer.
- Ar\(^+\) flux is depleted by charge exchange reactions while diffusing to wafer – and is maximum at 25-50 mTorr.

- Ar/CF\(_4\)=90/10
- 400 sccm

- HF: 150 MHz/300 W
- LF: 10 MHz/300 W

University of Michigan Institute for Plasma Science & Engr.
TOTAL ION IEADs INCIDENT ON WAFER: Ar/CF₄ = 90/10

- IEADs are separately collected over center and edge of wafer.
- Bimodal to single peak transition with increasing pressure.
- 10 mTorr: uniform
- ≥50 mTorr: larger radial variation.

- Ar/CF₄=90/10, 400 sccm
- HF: 150 MHz
- LF: 10 MHz/300 W
SCALING WITH PRESSURE: Ar/CF$_4$ =80/20

- With increasing pressure:
 - $[e]$ decreases from 50 to 150 mTorr owing to increasing attachment losses.
 - Maximum of $[e]$ still shifts towards the HF electrode and the reactor center...a less dramatic shift than Ar/CF$_4$=90/10.
 - Electrostatic component remains dominant due to lower conductivity.

- Ar/CF$_4$=80/20
- 400 sccm
- HF: 150 MHz/300 W
- LF: 10 MHz/300 W

University of Michigan
Institute for Plasma Science & Engr.
ION FLUX INCIDENT ON WAFER: \(\text{Ar/CF}_4 = 80/20 \)

- Compared with \(\text{Ar/CF}_4 = 90/10 \)...
 - More rapid depletion of \(\text{Ar}^+ \) flux by charge exchange.
 - \(\text{CF}_3^+ \) flux also maximizes at intermediate pressure — consequence of more confined plasma.

- \(\text{Ar/CF}_4 = 80/20 \)
- 400 sccm
- HF: 150 MHz/300 W
- LF: 10 MHz/300 W

University of Michigan
Institute for Plasma Science & Engr.
TOTAL ION IEADs INCIDENT ON WAFER: Ar/CF$_4$ = 80/20

- At Ar/CF$_4$ = 80/20 plasma is peaked near HF electrode edge, and largely uniform over the surface of wafer.
- Improved uniformity of IEADs at all pressures.

- Ar/CF$_4$=80/20, 400 sccm
- HF: 150 MHz
- LF: 10 MHz/300 W

University of Michigan
Institute for Plasma Science & Engr.
SCALING WITH GAP: Ar/CF₄ = 90/10

With increasing gap:

- [e] increases as diffusion length increases and loss decreases.
- Edge peaked [e] at gap = 1.5 cm, due to electrostatic edge effect.
- Maximum of [e] shifts towards the HF electrode.
- For gap > 2.5 cm, radial [e] profile is not sensitive to gap.
- Electrode spacing exceeds energy relaxation length and power deposition mechanism does not change.

- Ar/CF₄ = 90/10
- HF: 150 MHz/300 W
- 50 mTorr, 400 sccm
- LF: 10 MHz/300 W

University of Michigan Institute for Plasma Science & Engr.
• 2.5 cm: Little change across bulk plasma; tail in LF sheath lifted owing to HF wave penetration.
• 5.5 cm: Systematic tail enhancement towards the HF electrode — larger separation between HF and LF waves, system functions more linearly.
ION FLUX INCIDENT ON WAFER

- 1.5 cm: edge peaked flux due to electrostatic edge effect.
- 2.5-5.5 cm: middle peaked flux due to electrostatic and wave coupling.
- 6.5 cm: center peaked flux (with a middle peaked [e]): edge effect reduced at larger gap.

- Ar/CF$_4$=90/10
- HF: 150 MHz/300 W
- LF: 10 MHz/300 W

University of Michigan
Institute for Plasma Science & Engr.
Narrow gap has large center-to-edge non-uniformity due to change in sheath width.

Narrower sheath near edge produces broaded IEAD.

Large gap enables more diffusive and uniform sheath properties – and so more uniform IEADs.

- **Ar/CF₄=90/10, 50 mTorr, 400 sccm**
- **HF: 150 MHz/300W**
- **LF: 10 MHz/300 W**
CONCLUDING REMARKS

• For DF-CCPs sustained in Ar/CF₄=90/10 mixture with HF = 150 MHz:
 • With increasing pressure, maximum of ionization source \((S_e)\) shifts towards the HF electrode as energy relaxation distance decreases.
 • \(S_e\) mirrors EM field, which is center peaked from constructive interference and \([e]\) profile transitions from edge high to center high.
 • Increasing fraction of CF₄ to 20% results in more uniform ion fluxes and IEADs incident on wafer.

• Effects of gap size in Ar/CF₄=90/10 mixture:
 • Between 2.5 and 6.5 cm, \([e]\) profile is not sensitive to gap size since larger than energy relaxation distance.
 • Small gaps have more edge-to-center non-uniformity in IEADs due to strong edge effects.