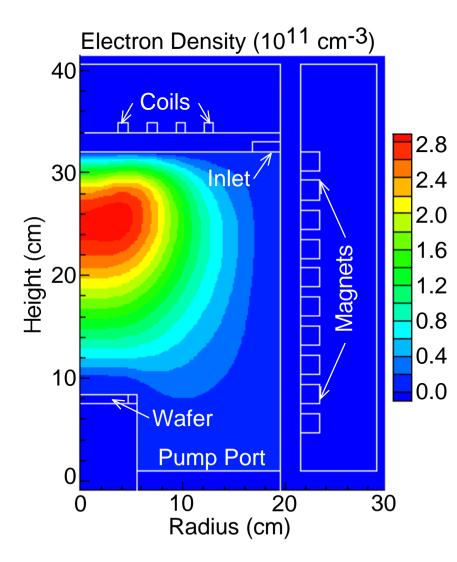
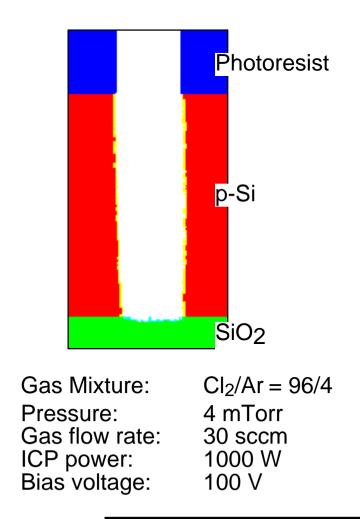
COMPUTATIONAL OPTICAL AND DISCHARGE PHYSICS GROUP University of Illinois at Urbana/Champaign

- The Computational Optical and Discharge Physics Group (CODPG) at the University of Illinois develops computer simulations and computer aided design tools for low temperature plasma processes and equipment.
 - Plasma materials processing for microelectronics fabrication
 - Plasma remediation of toxic gases
 - Pulsed Power
 - Lighting sources and plasma display panels
 - Lasers and laser-materials interactions
- These physics based, design capable models are jointly developed and validated with industrial collaborators. The models may be delivered and licensed to our collaborators.

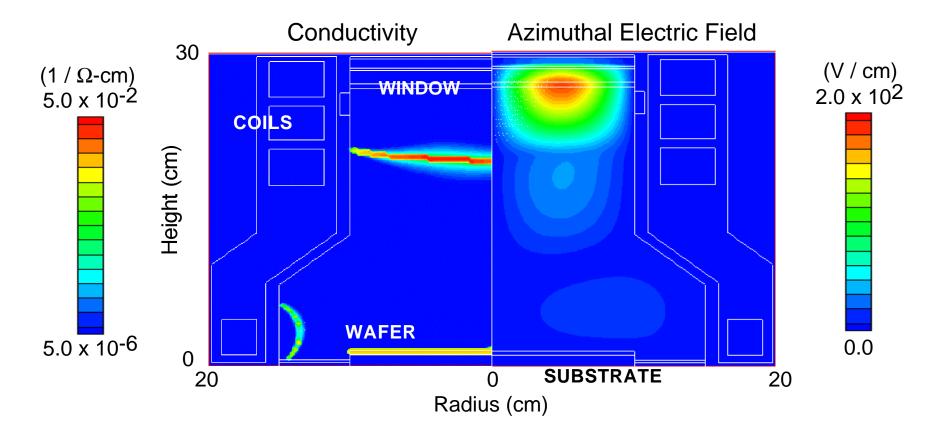

HYBRID PLASMA EQUIPMENT MODEL (HPEM)


- The Hybrid Plasma Equipment Model (HPEM) is a comprehensive modeling platform developed by the CODPG for low pressure (< 10's Torr) plasma processing reactors. The HPEM is capable of addressing:
 - Inductively Coupled Plasma (ICP) tools.
 - Reactive Ion Etchers (RIE)
 - Electron Cyclotron Resononance (ECR) sources
 - Magnetron sputter and Ionized Metal Physical Vapor Deposition (IMPVD)
 - Remote Plasma Activated Chemical Vapor Deposition (RPACVD)
 - Dust particle transport in plasma tools
- There are 2-d and 3-d versions of the HPEM.
- The HPEM is linked to profile simulators developed in the CODPG which predict the evolution of submicron features.
- The HPEM is now in use at 10 major semiconductor chip and plasma equipment manufactures.

University of Illinois Optical and Discharge Physics

Example: HPEM SIMULATION OF p-Si ETCHING

 The HPEM has been applied to analysis of a large variety of plasma etching systems. Here we show the electron density in an Inductively Coupled Plasma p-Si etching tool and the resulting etch profile.

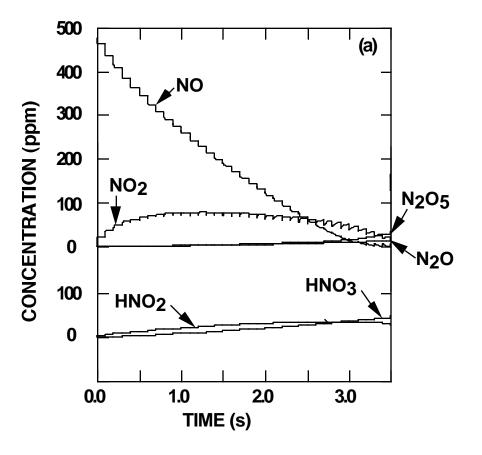


UNIVERSITY OF ILLINOIS OPTICAL AND DISCHARGE PHYSICS

Example: MICROWAVE ECR PLASMA SOURCE

- A Finite Difference Time Domain (FDTD) module has been developed for the HPEM to address microwave excitation of plasma sources.
- Here we show the plasma conductiviity and microwave field intensity (2.45 GHz) in an Electron Cyclotron Resonance (ECR) reactor. The injected mode is TE₀₁.

• N₂, 750 Watts, 1 mTorr, 10 sccm


UNIVERSITY OF ILLINOIS OPTICAL AND DISCHARGE PHYSICS

PLASMA REMEDIATION OF TOXIC GASES

- The CODPG has developed a suite of computer models to investigate the chemistry and hydrodynamics of plasma remediation of toxic gases.
- Remediation of volatile organic compounds (VOCs) and NO_X have been studied with the goal of determining reaction pathways and optimizing efficiency.

 Example: Density of nitrogen oxides during plasma remediation of NO_X from humid air in a Dielectric Barrier Discharge

• N₂/O₂/H₂O/NO = 85/5/10/500 ppm 400 K, 1 atm

UNIVERSITY OF ILLINOIS OPTICAL AND DISCHARGE PHYSICS

COMPUTATIONAL OPTICAL AND DISCHARGE PHYSICS GROUP Contact Information

Prof. Mark J. Kushner

University of Illinois Department of Electrical and Computer Engineering 1406 W. Green St. Urbana, IL 61801

Voice: 217-244-5137 FAX: 217-244-7097 e-mail: mjk@uiuc.edu http://uigelz.ece.uiuc.edu

University of Illinois Optical and Discharge Physics