Units and Best Practice

Units prove to be a confusing aspect of this course. The units which are commonly in use in the field are the "standard" for this course. Unfortunately, the units are "mixed" (that is, a mixture of cgs and mks). Some useful conversion factors are listed below. Some best practices you should follow are:

1. ALWAYS perform a units analysis and perform a "sanity" check to determine that your answer is reasonable. In most cases, "unreasonable" answers are a result of unit problems. For example, if your answer is that the argon ion density in a plasma etching reactor is 10^{50} ions/cm3, your answer is unreasonable and you probably have a units problem. You know your answer is unreasonable since if the density is really 10^{50} argon ions/cm3, the mass of 10 cm3 of the plasma would be equal to twice the mass of the earth.

2. Never, ever be confused by expressing temperature in Energy Units (or vice-versa). Temperature in Energy Units ALWAYS Means

$$T \text{ (eV)} \equiv kT \text{ (eV)}$$

3. Unless specified otherwise, you final answers in homework problems should be expressed in the following units:

- Electron energies or temperatures
- Atomic or molecular energies or temperatures
- Lengths
- Electron, atomic or molecular masses
- Electron, atomic or molecular speeds
- Cross sections
- Mobilities
- Diffusion coefficients
- Rates coefficients (1st, 2nd, 3rd order)
- Electric fields
- Normalized Electric Fields
- Densities
- Power
- Power deposition (specific)
- Current density

- EV
- K or eV
- cm
- AMU or g
- cm/s
- cm2 or A2
- cm2/V-s
- cm2/s
- s$^{-1}$, cm3/s, cm6/s
- V-cm$^{-1}$
- V-cm$^{-2}$ or Td
- cm$^{-3}$
- W
- W-cm$^{-3}$
- A-cm$^{-2}$
Useful Conversion Factors

\[k = 1.38 \times 10^{-16} \text{ erg/K} = 1.38 \times 10^{-23} \text{ J/K} \]

\[1 \text{ eV} = 1.6 \times 10^{-12} \text{ ergs} = 1.6 \times 10^{-19} \text{ J} = 11,594.2 \text{ K} \]

\[q = e = 1.6 \times 10^{-19} \text{ C (coulomb)} = 4.8 \times 10^{-10} \text{ esu} \]

\[1 \text{ V} = 1 \text{ J/C} = 10^7 \text{ erg/C} \]

\[\varepsilon_0 = 8.85 \times 10^{-12} \text{ [F/m or C}^2\text{/m-J]} = 8.85 \times 10^{-14} \text{ [F/cm or C}^2\text{/cm-J]} \]

\[m_e \text{ (electron mass)} = 0.911 \times 10^{-27} \text{ g} = 0.911 \times 10^{-30} \text{ kg} \]

E/N: 1 Td (Townsend) = \(10^{-17} \text{ V-cm}^2 = 10^{-21} \text{ V-m}^2 = 0.354 \text{ V/cm-Torr at } (T = 273 \text{ K)} \]

\[1 \text{ Å}^2 = 10^{-16} \text{ cm}^2 = 10^{-20} \text{ m}^2 \]

1 atm = 760 Torr = 1.013 bar

Gas Density: \[N = \frac{P}{kT} = 9.654 \times 10^{18} \frac{P(\text{Torr})}{T(\text{K})} \text{ cm}^{-3} \]

\[1 \text{ m}^3 = 10^6 \text{ cm}^3 \]
Useful Relationships

Electron speed for energy ε:

$$v = \left(\frac{2\varepsilon}{m_e} \right)^{1/2} = 5.93 \times 10^7 \left(\varepsilon (eV) \right)^{1/2} \text{cm/s}$$

Average electron thermal speed for temperature T_e:

$$v = \left(\frac{8kT_e}{\pi m_e} \right)^{1/2} = 6.69 \times 10^7 \left(T_e (eV) \right)^{1/2} \text{cm/s}$$

Debye Length:

$$\lambda_D = \left(\frac{\varepsilon_o k T_e}{n_e q^2} \right)^{1/2} = \left(\frac{k T_e}{4 \pi m_e q^2} \right)^{1/2} = 743 \left[\frac{T_e (eV)}{n_e (cm^{-3})} \right]^{1/2} \text{cm}$$

Plasma Frequency:

$$\omega_p (\text{radian/s}) = \left(\frac{n_e q^2}{m_e \varepsilon_o} \right)^{1/2} = \left(\frac{4 \pi m_e q^2}{m_e} \right)^{1/2} = 5.64 \times 10^4 \left[\frac{n_e (cm^{-3})}{cm^3} \right]^{1/2} \text{radians/s}$$

Rate coefficient:

$$k \left(\frac{cm^3}{s} \right) = < \sigma \cdot v > \ (\text{e.g.} \ (e.g. \ \frac{\partial N}{\partial t} = n_e k N))$$

$\sigma = \text{cross section cm}^2 \quad v = \text{velocity cm/s}$

Conductivity:

$$\sigma = \frac{n_e q^2}{m_e v_m} = 2.81 \times 10^{-4} \frac{n_e \left(cm^{-3} \right)}{v_m \left(s^{-1} \right)} \frac{1}{\Omega - cm}$$

$v_m = \text{electron momentum transfer collision frequency}$

Electron Mobility:

$$\mu_e = \frac{q}{m_e v_m} = 1.756 \times 10^{15} \left(\frac{cm^2}{V - s} \right)$$